
QL Assembly Language Mailing List

Issue 6

Norman Dunbar

PUBLISHED BY MEMYSELFEYE PUBLISHING ;-)

Download from:
https://github.com/NormanDunbar/QLAssemblyLanguageMagazine/blob/Issue_006/Issue_
006/Assembly_Language_006.pdf

Licence:
Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the
“License”). You may not use this file except in compliance with the License. You may obtain a
copy of the License at http://creativecommons.org/licenses/by-nc/3.0. Unless required
by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.

This pdf document was created on 15/12/2018 at 14:34:38.

Copyright c©2018 Norman Dunbar

https://github.com/NormanDunbar/QLAssemblyLanguageMagazine/blob/Issue_006/Issue_006/Assembly_Language_006.pdf
https://github.com/NormanDunbar/QLAssemblyLanguageMagazine/blob/Issue_006/Issue_006/Assembly_Language_006.pdf
http://creativecommons.org/licenses/by-nc/3.0

Contents

1 Preface . 7

1.1 Feedback 7

1.2 Subscribing to The Mailing List 7

1.3 Contacting The Mailing List 8

2 Feedback on Issue 5 . 9

2.1 No Feedback so far! 9

3 Cross Compiled Programs . 11

3.0.1 The XTcc Trailer Record . 11

3.0.2 Program Description . 12

3.0.3 The Program Listing . 12

4 Using the MC68020 - Part 3 . 19

4.1 Status Register 19

4.1.1 Trace Bits T1 and T0 . 19

4.1.2 Supervisor Master and Interrupt Modes . 20

4.2 Control Registers and MOVEC 20

4.2.1 SFC and DFC- Source and Destination Function Code 20

4.2.2 VBR - vector Base Register . 21

4.2.3 CACR and CAAR - Cache Control . 21

4.2.4 USP, MSP and ISP - Stack Pointers . 21

5 Image Credits . 23

Listings

3.1 XTcc - Comments . 12

3.2 XTcc - Equates . 12

3.3 XTcc - Job Start . 13

3.4 XTcc - Channel Checking . 14

3.5 XTcc - Read the File Header . 14

3.6 XTcc - Is the File Executable? . 15

3.7 XTcc - Locating the XTcc Trailer . 15

3.8 XTcc - Read the XTcc Trailer Record . 15

3.9 XTcc - Setting the Header Data . 16

3.10 XTcc - Writing the Header . 17

3.11 XTcc - Termination . 17

1. Preface

1.1 Feedback

Please send all feedback to assembly@qdosmsq.dunbar-it.co.uk. You may also send articles
to this address, however, please note that anything sent to this email address may be used in a future
issue of the eMagazine. Please mark your email clearly if you do not wish this to happen.

This eMagazine is created in LATEXsource format, aka plain text with a few formatting commands
thrown in for good measure, so I can cope with almost any format you might want to send me. As
long as I can get plain text out of it, I can convert it to a suitable source format with reasonable ease.

I use a Linux system to generate this eMagazine so I can read most, if not all, Word or MS Office
documents, Quill, Plain text, email etc formats. Text87 might be a problem though!

1.2 Subscribing to The Mailing List

This eMagazine is available by subscribing to the mailing list. You do this by sending your
favourite browser to http://qdosmsq.dunbar-it.co.uk/mailinglist and clicking on the
link “Subscribe to our Newsletters”.

On the next screen, you are invited to enter your email address twice, and your name. If you wish
to receive emails from the mailing list in HTML format then tick the box that offers you that option.
Click the Subscribe button.

An email will be sent to you with a link that you must click on to confirm your subscription. Once
done, that is all you need to do. The rest is up to me!

assembly@qdosmsq.dunbar-it.co.uk
http://qdosmsq.dunbar-it.co.uk/mailinglist

8 Chapter 1. Preface

1.3 Contacting The Mailing List

I’m rather hoping that this mailing list will not be a one-way affair, like QL Today appeared to be.
I’m very open to suggestions, opinions, articles etc from my readers, otherwise how do I know
what I’m doing is right or wrong?

I suspect George will continue to keep me correct on matters where I get stuff completely wrong, as
before, and I know George did ask if the list would be contactable, so I’ve set up an email address
for the list, so that you can make comments etc as you wish. The email address is:

assembly@qdosmsq.dunbar-it.co.uk

Any emails sent there will eventually find me. Please note, anything sent to that email address will
be considered for publication, so I would appreciate your name at the very least if you intend to
send something. If you do not wish your email to be considered for publication, please mark it
clearly as such, thanks. I look forward to hearing from you all, from time to time.

If you do have an article to contribute, I’ll happily accept it in almost any format - email, text, Word,
Libre/Open Office odt, Quill, PC Quill, etc etc. Ideally, a LATEXsource document is the best format,
because I can simply include those directly, but I doubt I’ll be getting many of those! But not to
worry, if you have something, I’ll hopefully manage to include it.

assembly@qdosmsq.dunbar-it.co.uk

2. Feedback on Issue 5

2.1 No Feedback so far!

3. Cross Compiled Programs

Recently, I’ve been playing about with the xtc68 C compiler - which is basically C68 for Linux
(or Windows, if you must!) and allows me to have fun writing C68 programs on my Linux laptop,
which will be eventually copied over to the QL, and executed there.

As ever, any computer that is not a QL (or an emulator) has a problem when executable files are
involved - there’s no file header present, so there’s no easy way to make the file executable on the
QL - other than making up some number for the data space, allocating a chunk of RAM equal to
the file size, loading it into that RAM area with LBYTES and then SEXECing the file back to the
device. There has to be an easier way, surely?

I started a thread on QLForum about this cross compiler, and somewhere in that thread, I put up
the code for a SuperBasic utility to fix up the dataspace for these compiled files. The forum thread
is at https://qlforum.co.uk/viewtopic.php?f=3&t=2605. However, it wasn’t quite what I
really needed, plus, I couldn’t really write an article for the eComic if the code was in SuperBASIC,
could I?

Step forward my XTcc utility, described later. This utility does all the needful to get a file on the
QL from its unusable state to a executable - very handy for files compiled with the xtc68 compiler
or anything else that writes an XTcc trailer to the compiled file. I only know of the xtc68 compiler
which does this, but there may be others. (Feedback very welcome.)

3.0.1 The XTcc Trailer Record

The trailer record produced by the compiler, and any other applications that create it, is a simple
addition of 8 bytes to the very end of the file in question. These 8 bytes are split into two 4 byte
chunks:

• The text “XTcc” in exactly that letter case.
• The required data space for the QL file, in big endian, long word format.

https://qlforum.co.uk/viewtopic.php?f=3&t=2605

12 Chapter 3. Cross Compiled Programs

3.0.2 Program Description

The program, XTcc, is quite simple and carries out the following steps after being executed as a
filter:

• Checks that only one filename was supplied, exits with a Bad Parameter error if not.
• Reads the file’s header.
• If the file is already an executable file, then exits quietly as there is nothing more to do.
• Reads the file’s length from the header, and sets the file pointer to that position minus 8 bytes.

If the file cannot be positions at the required place, exit with an Out of Range error.
• Reads the last 8 bytes of the file. Exits with a File Error if 8 bytes couldn’t be read.
• Checks that the first 4 bytes read are "XTcc", if not, exits with a Not Found error.
• Copies the data space from the last 4 bytes of the file into the file header.
• Sets the file’s type, in the header, to be executable.
• Writes the file header back to the medium.
• The job then exits as if nothing had happened.

3.0.3 The Program Listing

1 ;−−
2 ; XTcc :
3 ;
4 ; Th i s u t i l i t y r e a d s a c r o s s−compi l ed e x e c u t a b l e f o r QDOSMSQ and w i l l
5 ; a t t e m p t t o c o r r e c t l y s e t t h e f i l e ’ s d a t a s p a c e a c c o r d i n g t o t h e
6 ; ’XTcc ’ s e t t i n g s t o r e d a t t h e end of t h e f i l e .
7 ;
8 ;
9 ; EX XTcc_bin , i n p u t _ f i l e

10 ;
11 ;−−
12 ; 1 3 / 1 2 / 2 0 1 8 NDunbar C r e a t e d f o r QDOSMSQ Assembly M a i l i n g L i s t .
13 ;−−
14 ; (c) Norman Dunbar , 2018 . P e r m i s s i o n g r a n t e d f o r u n l i m i t e d use
15 ; o r abuse , w i t h o u t a t t r i b u t i o n b e i n g r e q u i r e d . J u s t e n j o y !
16 ;−−

Listing 3.1: XTcc - Comments

Nothing to see here except some blurb explaining what the code is for and how to execute the
utility.

17
18 ; How many c h a n n e l s do I want ?
19 NUMCHANS
20 equ 1 ; How many c h a n n e l s r e q u i r e d ?
21
22
23 ; S t a c k s t u f f .
24 s o u r c e I d
25 equ $02 ; O f f s e t (A7) t o i n p u t f i l e i d
26
27 ; Othe r s t u f f .
28 e r r _ n c
29 equ −1 ; Not c o m p l e t e .
30 e r r _ o r

13

31 equ −4 ; Out o f r a n g e .
32 e r r _ n f
33 equ −7 ; Not found .
34 e r r _ b p
35 equ −15 ; Bad p a r a m e t e r .
36 e r r _ f e
37 equ −16 ; F i l e e r r o r .
38 t i m e o u t
39 equ −1 ; Trap c a l l t i m e o u t s .
40 me
41 equ −1 ; Job i d f o r t h i s j o b .
42 exeType
43 equ $01 ; F i l e Type f o r e x e c u t a b l e .
44 f i l e T y p e
45 equ $05 ; O f f s e t i n h e a d e r t o f i l e t y p e .
46 f i l e S i z e
47 equ $00 ; O f f s e t t o f i l e l e n g t h .
48 f i l e D a t a
49 equ $06 ; O f f s e t t o d a t a s p a c e i n h e a d e r

Listing 3.2: XTcc - Equates

The code above simply initialises various equates that will be required elsewhere.

50
51 ; ==
52 ; Here b e g i n s t h e code .
53 ;−−
54 ; S t a c k on e n t r y :
55 ;
56 ; $0c (a7) = b y t e s o f p a r a m e t e r + padding , i f odd l e n g t h .
57 ; $0a (a7) = P a r a m e t e r s i z e word .
58 ; $06 (a7) = Outpu t f i l e c h a n n e l i d .
59 ; $02 (a7) = Source f i l e c h a n n e l i d .
60 ; $00 (a7) = How many c h a n n e l s ? Should be $02 .
61 ; ==
62 s t a r t
63 b r a . s c h e c k S t a c k
64
65 dc . l $00
66 dc .w $4afb
67 name
68 dc .w name_end−name−2
69 dc . b ’XTcc ’
70 name_end
71 equ ∗
72
73 v e r s i o n
74 dc .w vers_end−v e r s i o n −2
75 dc . b ’ V e r s i o n 1 . 0 0 − 1 3 / Dec /2018 ’
76 v e r s _ e n d
77 equ ∗
78
79 r h _ b u f f e r
80 ds .w 32 ; S t o r a g e f o r f i l e h e a d e r
81 x t c c _ b u f f e r
82 ds . l 2 ; S t o r a g e f o r XTcc f l a g ∗

14 Chapter 3. Cross Compiled Programs

=⇒ d a t a s p a c e

Listing 3.3: XTcc - Job Start

Now we are getting interesting. The start of the code is as above, and it consists of the standard
QDOSMSQ job header followed by a version number for the utility - which is, currently, unused in
the remainder of the code - followed by the defining of two buffers. One buffer is 64 bytes long for
the file header and the other is 8 for the XTcc Trailer Record data.

83
84 ;−−
85 ; Check t h e s t a c k on e n t r y . We on ly r e q u i r e NUMCHAN c h a n n e l s − any
86 ; t h i n g o t h e r t h a n NUMCHANS w i l l r e s u l t i n a BAD PARAMETER e r r o r on
87 ; e x i t from EW (b u t s a d l y , n o t from EX) .
88 ;−−
89 c h e c k S t a c k
90 cmpi .w #NUMCHANS, (a7) ; One c h a n n e l i s a must
91 beq . s r e a d H e a d e r ; Ok
92 moveq # e r r_bp , d0 ; Oops
93 b r a . s e r r o r E x i t ; Ba le o u t

Listing 3.4: XTcc - Channel Checking

The first check made by the code is to ensure that it was called with a single file channel on the
stack. The utility wil exit with a bad parameter error if this is not the case.

94
95 ;−−
96 ; READ_HEADER = r e a d t h e f i l e h e a d e r f o r t h e g i v e n c h a n n e l .
97 ;
98 ; A0 . L = Channel Id . (P r e s e r v e d)
99 ; A1 . L = B u f f e r a d d r e s s . (1 p a s t end of b u f f e r on r e t u r n)

100 ; D1 = Not used . (S i z e o f b u f f e r r e a d)
101 ; D2 .W = B u f f e r l e n g t h . (P r e s e r v e d)
102 ; D3 .W = Timeout . (P r e s e r v e d)
103 ;−−
104 r e a d H e a d e r
105 moveq # f s _ h e a d r , d0 ; Reading t h e h e a d e r
106 moveq #64 , d2 ; B u f f e r maximum s i z e
107 moveq # t i m e o u t , d3 ; I n f i n i t y i s p r e s e r v e d

=⇒ t h r o u g h o u t
108 move . l s o u r c e I d (a7) , a0 ; I n p u t c h a n n e l ID − p r e s e r v e d
109 l e a r h _ b u f f e r , a1 ; Header b u f f e r a d d r e s s
110 move . l a1 , a3 ; P r e s e r v e b u f f e r a d d r e s s
111 move .w #64 , d2 ; B u f f e r maximum l e n g t h
112 t r a p #3 ; Do i t
113 t s t . l d0 ; Check e r r o r s
114 bne . s e r r o r E x i t ; Oh d e a r !
115 cmp .w d1 , d2 ; S u c c e s s f u l r e a d ?
116 beq . s c h e c k E x e c u t a b l e T y p e ; Yes
117 moveq # e r r _ n c , d0 ; Not Complete
118 b r a . s e r r o r E x i t ; De p a r t

Listing 3.5: XTcc - Read the File Header

Reading the passed file’s header is next. There should be 64 bytes to be read and this is checked on
return form the trap. If we didn’t get exactly 64 bytes, we bale out with a not complete error.

15

Interestingly, I noticed that in QPC version 4.0.5, if the file was ever renamed, the file header
appears to retain the original name. That caused me no end of fun1 when I was debugging - reading
the header for one file, and getting a completely different file’s header, or so it seemed.

119
120 ;−−
121 ; Check i f t h e f i l e i s a l r e a d y e x e c u t a b l e . I f so , q u i e t l y e x i t a s we
122 ; have n o t h i n g t o do . Cross compi l ed f i l e s do n o t come s e t t o be
123 ; e x e c u t a b l e .
124 ;−−
125 c h e c k E x e c u t a b l e T y p e
126 cmpi . b # exeType , f i l e T y p e (a3) ; B u f f e r s t a r t i s i n a3 now
127 beq . s a l l D o n e ; E x e c u t a b l e − n o t h i n g t o do

Listing 3.6: XTcc - Is the File Executable?

If the header was happily read, the code above makes sure that the file’s type is not already
executable. If it is, the utility will simply exit as there is nothing more to do. Cross compiled files
don’t come with the file’s type set to executable.

128
129 ;−−
130 ; In a c r o s s compi l ed f i l e , t h e r e i s a p a i r o f long words a t t h e ve ry
131 ; end of t h e f i l e . These a r e ’XTcc ’ f o l l o w e d by t h e d a t a s p a c e f o r
132 ; QDOSMSQ.
133 ;−−
134 ; FS_POSAB :
135 ;
136 ; A0 . L = Channel Id . (P r e s e r v e d)
137 ; A1 . L = Not used . (C o r r u p t e d !)
138 ; D1 . L = F i l e p o s i t i o n . (New f i l e p o s i t i o n on r e t u r n)
139 ; D3 .W = Timeout . (P r e s e r v e d)
140 ;−−
141 s e t F i l e T o X T c c
142 moveq # f s_posab , d0 ; P o s i t i o n a b s o l u t e l y
143 move . l f i l e S i z e (a3) , d1 ; Get f i l e s i z e
144 subq . l #8 , d1 ; P o i n t a t XTcc l o c a t i o n i n f i l e
145 move . l d1 , d2 ; Save r e q u i r e d p o s i t i o n
146 t r a p #3 ; Do i t
147 t s t . l d0 ; Ok?
148 bne . s e r r o r E x i t ; Oops !
149 cmp . l d1 , d2 ; A c t u a l = r e q u e s t e d p o s i t i o n ?
150 beq . s readXTccData ; Yes
151 moveq # e r r _ o r , d0 ; Out o f r a n g e
152 b r a . s e r r o r E x i t ; Ba le o u t

Listing 3.7: XTcc - Locating the XTcc Trailer

The header was read and the file isn’t executable. The next step is to position the file’s read pointer
at 8 bytes back from the very end of the file. This is where we expect to find the XTcc Trailer
Record that we need. If we fail to set the position exactly as requested, we bale out with an out of
range error.

153
154 ;−−
155 ; Read t h e f i n a l 2 words from t h e i n p u t f i l e .

1For certain values of ‘fun’!

16 Chapter 3. Cross Compiled Programs

156 ;−−
157 ; IO_FSTRG :
158 ;
159 ; A0 . L = Channel Id . (P r e s e r v e d)
160 ; A1 . L = B u f f e r a d d r e s s . (Old A1 + r e t u r n e d D1 .W)
161 ; D1 . L = Not Used . (Number o f b y t e s r e a d)
162 ; D2 .W = B u f f e r s i z e . (P r e s e r v e d)
163 ; D3 .W = Timeout . (P r e s e r v e d)
164 ;−−
165 readXTccData
166 moveq # i o _ f s t r g , d0 ; F e t c h b y t e s
167 moveq #8 , d2 ; By tes we want
168 l e a x t c c _ b u f f e r , a1 ; B u f f e r a d d r e s s
169 move . l a1 , a2 ; Save b u f f e r a d d r e s s
170 t r a p #3 ; Do i t
171 t s t . l d0
172 bne . s e r r o r E x i t ; Oops !
173 cmp .w d2 , d1 ; Did we g e t 8 b y t e s ?
174 beq . s checkXTccFound ; Yes
175 moveq # e r r _ f e , d0 ; −16 F i l e E r r o r
176 b r a . s e r r o r E x i t ; Ba le o u t

Listing 3.8: XTcc - Read the XTcc Trailer Record

Next up, we read the 8 bytes that make up the XTcc Trailer Record. If this fails, or we do not read
exactly 8 bytes, bale out with a file error message.

177
178 ;−−
179 ; We s h o u l d have ’XTcc ’ i n t h e b u f f e r p l u s t h e d a t a s p a c e r e q u i r e d .
180 ;−−
181 checkXTccFound
182 cmpi . l #" XTcc " , (a2) + ; Got t h e f l a g ?
183 bne . s noXTccFound ; Nope
184
185 ;−−
186 ; We have t h e d a t a we want , copy t h e d a t a s p a c e i n t o t h e f i l e h e a d e r
187 ; and t h e n make t h e f i l e e x e c u t a b l e .
188 ;−−
189 e x t r a c t D a t a S p a c e
190 move . l (a2) , f i l e D a t a (a3) ; Copy t h e v a l u e ove r
191 move . b # exeType , f i l e T y p e (a3) ; Make e x e c u t a b l e
192 b r a . s w r i t e H e a d e r ; Wr i t e t h e h e a d e r back
193
194 ;−−
195 ; We didn ’ t f i n d t h e " XTcc " f l a g a t t h e end of t h e f i l e .
196 ;−−
197 noXTccFound
198 moveq # e r r _ n f , d0 ; Not found
199 b r a . s e r r o r E x i t ; Ba le o u t

Listing 3.9: XTcc - Setting the Header Data

Assuming that we managed to read it, does the XTcc Trailer start with the XTcc flag, which happens
to be the string "XTcc" in that letter case. In the event that we didn’t find that flag, we will exit
with a not found error.

17

If the flag is found, copy the last 4 bytes of the XTcc Trailer into the file’s header to set the data
space, and set the file’s type to be an executable file.

200
201 ;−−
202 ; Wr i t e t h e f i l e h e a d e r f o r t h e g i v e n c h a n n e l .
203 ;
204 ; A0 . L = Channel Id . (P r e s e r v e d)
205 ; A1 . L = B u f f e r a d d r e s s . (C o r r u p t e d)
206 ; D1 = Not used . (Length o f s e t h e a d e r)
207 ; D2 = Not used . (P r e s e r v e d)
208 ; D3 .W = Timeout . (P r e s e r v e d)
209 ;−−
210 w r i t e H e a d e r
211 moveq # f s _ h e a d s , d0 ; Wr i t e t h e h e a d e r
212 move . l a3 , a1 ; Header b u f f e r
213 t r a p #3 ; Do i t
214 t s t . l d0 ; Ok?
215 bne . s e r r o r E x i t ; Sadly , n o t !

Listing 3.10: XTcc - Writing the Header

We can now write the file header back to the medium. This will set the data space and make the file
executable.

216
217 ;−−
218 ; No e r r o r s , e x i t q u i e t l y back t o SuperBASIC .
219 ;−−
220 a l l D o n e
221 moveq #0 , d0
222
223 ;−−
224 ; We have h i t an e r r o r so we copy t h e code t o D3 t h e n e x i t v i a a
225 ; f o r c i b l e remova l o f t h i s j o b . EXEC_W/EW w i l l d i s p l a y t h e e r r o r i n
226 ; SuperBASIC , b u t EXEC/EX w i l l n o t .
227 ;−−
228 e r r o r E x i t
229 move . l d0 , d3 ; E r r o r code we want t o r e t u r n
230
231 ;−−
232 ; K i l l m ys e l f when an e r r o r was d e t e c t e d , o r a t EOF .
233 ;−−
234 s u i c i d e
235 moveq # m t _ f r j o b , d0 ; Th i s j o b w i l l d i e soon
236 moveq #me , d1
237 t r a p #1

Listing 3.11: XTcc - Termination

The end. This is where we exit from the utility either with an error code or not.

Be aware that you will only ever see the error code or message, when you call the utility with EW
as EX will not hang around to find out what the error, if any, was - it creates the job, activates it,
and bales out. Only EW hangs around to the bitter end!

4. Using the MC68020 - Part 3

In the last issue, we took a very long look at the new and upgraded instructions that are now
available when using an MC68020 processor as found in QPC - and possibly, in other emulators
too. The old BBQL1 uses an MC68008 and cannot cope with the new stuff.

To assemble these 62020 instructions, you need a copy of Gwass available from George’s web site.2

This article continues our look at new features of the MC68020.

Here are the subjects I will cover in this issue, in relation to the 68020:

• The new format Status Register
• The various Control Registers used by the MOVEC instruction.

4.1 Status Register

The status register looks like the following in the MV68020:

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T1 T0 S M - I2 I1 I0 - - - X N Z V C

Table 4.1: MC68020 Status Register

4.1.1 Trace Bits T1 and T0

In the status register for the MC68020 we have now got an extra Trace bit - bit 14 - known as T0.
The original (MC68008) Trace bit, bit 15, is now known as the T1 bit. Between the two Trace bits,

1Black Box QL
2http://gwiltprogs.info/page2.htm

http://gwiltprogs.info/page2.htm
http://gwiltprogs.info/page2.htm

20 Chapter 4. Using the MC68020 - Part 3

better tracing can take place, as follows:

• 00 - When both Trace bits are zero, no tracing takes place.
• 01 - When T1 is clear and T0 is set, tracing takes place on a change of program flow - a

branch, jump or subroutine call.
• 10 - When T1 is set and T0 is clear, tracing happens after every instruction. This is the tracing

mode we are used to on the MC68008.
• 11 - Undefined. Probably best avoided!

4.1.2 Supervisor Master and Interrupt Modes

In addition to the extra Trace bit, there is a new Master bit as well. Bit 12 is the new Master bit.

On the MC68020, Supervisor mode is now split into two sub modes - master and interrupt. When
the S and M bits are set then the processor is running in Master mode and uses the new Master
Stack with the Master Stack Pointer in A7. (MSP(A7”))

When the S bit is set, and the M bit is clear, then the processor is running in Interrupt mode and
uses another new stack, the Interrupt Stack, with A7 being the Interrupt Stack Pointer. (ISP(A7’))

The only difference between the two modes is the different stack pointer in use in register A7.

4.2 Control Registers and MOVEC

On the MC68020 we have the following control registers:

Control Register Description
SFC Source Function Code
DFC Destination Function Code
USP User Stack Pointer
VBR Vector Base Register

CACR Cache Control Register
CAAR Cache Address Register
MSP Master Stack Pointer
ISP Interrupt Stack Pointer

Table 4.2: MC68020 Control Registers

4.2.1 SFC and DFC- Source and Destination Function Code

The alternate function code registers contain 3-bit function codes. Function codes can be considered
extensions of the 32-bit logical address that optionally provides as many as eight 4-Gbyte address
spaces - potentially increasing the 32 bit address bus to 35 bits.

The processor automatically generates function codes to select address spaces for data and programs
at the user and supervisor modes.

Certain instructions use SFC and DFC to specify the function codes for operations.

The processor has three pins named FC0, FC1 and FC2. When the processor reads or writes from
memory, these pins reflect information about the state of the processor.

They show the state of the processor - is it running in user or supervisor mode - and whether it is

4.2 Control Registers and MOVEC 21

accessing data or instructions in memory.

The function codes are often used by external Memory Management Units (MMU) to protect
various sections of memory. To the best of my knowledge, the QL doesn’t have an MMU.

4.2.2 VBR - vector Base Register

The VBR is a 32 bit register which contains the base address of the exception vector table in
memory. The displacement of an exception vector adds to the value in this register, which accesses
the vector table.

On the MC68008, the exception table always lived at address 0, however, from the MC68010
onwards, the vector table still lives at address 0, but after a processor reset, the VBR can be adjusted
to any desired location - provided that it can be addressed by a single 32 bit register.

4.2.3 CACR and CAAR - Cache Control

Many programs spend a lot of time executing loops. While within these loops, they execute the
same (small) set of instructions over and over again. Each time the processor needs to execute an
instruction, it must read it from memory.

There is a 256 byte instruction cache built in to the MC68020 (but probably not built in to the virtual
MC68020 using in QPC, for example) which contains the most recently executed instructions.

In the case of a loop, the processor doesn’t need to access memory to read the instructions more
than once, in theory. When an instruction is read, it is stored in the cache and if executed again,
will be read from cache which is much much quicker than reading from memory.

This is not always appropriate though, so the processor has the ability to enable, disable and
otherwise manipulate the cache through the use of the CACR and CAAR control registers. These
registers are 32 bits wide.

The use of these registers is beyond the scope of this series. They are unlikely to be mentioned ever
again - except in passing, maybe!

4.2.4 USP, MSP and ISP - Stack Pointers

In normal user programs, the processor runs in user mode and the stack pointer in A7 is the USP or
User Stack Pointer.

In Supervisor mode, a different stack is in use, usually limited in size, and on the BBQL, A7 was
then known as the SSP or Supervisor Stack Pointer.

On the MC68020 we have two submodes for Supervisor mode, and each one can have a different
stack area and A7 will be set accordingly to the Master Stack Pointer (MSP) or the Interrupt Stack
Pointer (ISP) depending on the settings of the S and M bits in the Status Register.

If S is set and M is clear, the ISP is in A7, while the MSP is in A7 if both bits are set.

5. Image Credits

The front cover image on this ePeriodical is taken from the book Kunstformen der Natur by German
biologist Ernst Haeckel. The book was published between 1899 and 1904. The image used is of
various Polycystines which are a specific kind of micro-fossil.

I have also cropped the image for use on each chapter heading page.

You can read about Polycystines on Wikipedia and there is a brief overview of the above book,
also on Wikipedia, which shows a number of other images taken from the book. (Some of which I
considered before choosing the current one!)

Polycystines have absolutely nothing to do with the QL or computing in general - in fact, I suspect
they died out before electricity was invented - but I liked the image, and decided that it would make
a good cover for the book and a decent enough chapter heading image too.

Not that I am suggesting, in any way whatsoever, that we QL fans are ancient.

https://en.wikipedia.org/wiki/Polycystine
https://en.wikipedia.org/wiki/Kunstformen_der_Natur

	1 Preface
	1.1 Feedback
	1.2 Subscribing to The Mailing List
	1.3 Contacting The Mailing List

	2 Feedback on Issue 5
	2.1 No Feedback so far!

	3 Cross Compiled Programs
	3.0.1 The XTcc Trailer Record
	3.0.2 Program Description
	3.0.3 The Program Listing

	4 Using the MC68020 - Part 3
	4.1 Status Register
	4.1.1 Trace Bits T1 and T0
	4.1.2 Supervisor Master and Interrupt Modes

	4.2 Control Registers and MOVEC
	4.2.1 SFC and DFC- Source and Destination Function Code
	4.2.2 VBR - vector Base Register
	4.2.3 CACR and CAAR - Cache Control
	4.2.4 USP, MSP and ISP - Stack Pointers

	5 Image Credits

